Simple approach to reinforce hydrogels with cellulose nanocrystals.
نویسندگان
چکیده
The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-like cellulose nanocrystals (CNCs) are encapsulated by flexible polymer chains of poly(N,N-dimethylacrylamide) (PDMA). The CNC-PDMA colloidal clusters build a homogeneously cross-linked network and lead to significant reinforcing effect of the composites. Hierarchically structured CNC-PDMA clusters, from isolated particles to an interpenetrated network, are observed by transmission electron microscopy measurements. Dynamic shear oscillation measurements are applied to demystify the differences in network rheological behaviors, which were compared with network behaviors of chemically cross-linked PDMA counterparts. Tensile tests indicate that the hybrid hydrogels possess higher mechanical properties and a more efficient energy dissipation mechanism. In particular, with only 0.8 wt% of CNC loading, a 4.8-fold increase in Young's modulus, 9.2-fold increase in tensile strength, and 5.8-fold increase in fracture strain are achieved, which is ascribed to a combination of CNC reinforcement in the soft matrix and CNC-PDMA colloidal cluster conformational rearrangement under stretching. Physical interactions within networks serve as reversible sacrificial bonds that dissociate upon deformation, exhibiting large hysteresis as an energy dissipation mechanism via cluster mobility. This result contrasts with the case of chemically cross-linked PDMA counterparts where the stress relaxation is slow due to the permanent cross-links and low resistance against crack propagation within the covalent network.
منابع مشابه
Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels.
Rod-shaped cellulose nanocrystals (CNCs) were manufactured and used to reinforce polyacrylamide (PAM) hydrogels through in situ free-radical polymerization. The gelation process of the nanocomposite hydrogels was monitored on a rheometer using oscillatory shear. The chemical structure, morphology, swelling property, and compression strength of the formed gels were investigated. A possible mecha...
متن کاملSynthesis of New Hydrogels Based on Xanthan and Cellulose Allomorphs
The large availability of cellulose in nature and the low cost of cellulose derivatives make the cellulosebased hydrogels particularly attractive. New hydrogels were obtained by chemical cross-linking of different cellulose allomorphs (cellulose I, cellulose II and cellulose III) and xanthan with epichlorohydrin. The preparation conditions of the transparent cellulose hydrogels were established...
متن کاملSynthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid) Reinforced with Cellulose Nanocrystals
pH-sensitive poly(acrylic acid) (PAA) hydrogel reinforced with cellulose nanocrystals (CNC) was prepared. Acrylic acid (AA) was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide) with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD) data showed an increase in crystallini...
متن کاملVersatile Molding Process for Tough Cellulose Hydrogel Materials
Shape-persistent and tough cellulose hydrogels were fabricated by a stepwise solvent exchange from a homogeneous ionic liquid solution of cellulose exposure to methanol vapor. The cellulose hydrogels maintain their shapes under changing temperature, pH, and solvents. The micrometer-scale patterns on the mold were precisely transferred onto the surface of cellulose hydrogels. We also succeeded i...
متن کاملPolyaniline Modified Nanocellulose as Reinforcement of a Shape Memory Polyurethane
In this work, electrically conductive cellulose nanocrystals were used to reinforce shape memory polyurethanes, adding an extra variable to tune up the properties of these nanocomposites. The modified nanocrystals were prepared by an in situ polymerization method, growing polyaniline (PANI) on the surface of the cellulose nanofibrils [3]. These crystals combine the good mechanical properties of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 11 شماره
صفحات -
تاریخ انتشار 2014